Обыкновенные дроби делятся на \textit{правильные} и \textit{неправильные} дроби. Такое разделение основано на сравнении числителя и знаменателя.
Правильные дроби
Правильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель меньше знаменателя, т.е. $m
Пример 1
Например, дроби $\frac{1}{3}$, $\frac{9}{123}$, $\frac{77}{78}$, $\frac{378567}{456298}$ являются правильными, так как в каждой из них числитель меньше знаменателя, что отвечает определению правильной дроби.
Существует определение правильной дроби, которое базируется на сравнении дроби с единицей.
правильной , если она меньше единицы:
Пример 2
Например, обыкновенная дробь $\frac{6}{13}$ является правильной, т.к. выполняется условие $\frac{6}{13}
Неправильные дроби
Неправильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель больше или равен знаменателю, т.е. $m\ge n$.
Пример 3
Например, дроби $\frac{5}{5}$, $\frac{24}{3}$, $\frac{567}{113}$, $\frac{100001}{100000}$ являются неправильными, так как в каждой из них числитель больше или равен знаменателю, что соответствует определению неправильной дроби.
Дадим определение неправильной дроби, которое базируется на ее сравнении с единицей.
Обыкновенная дробь $\frac{m}{n}$ является неправильной , если она равна или больше единицы:
\[\frac{m}{n}\ge 1\]
Пример 4
Например, обыкновенная дробь $\frac{21}{4}$ является неправильной, т.к. выполняется условие $\frac{21}{4} >1$;
обыкновенная дробь $\frac{8}{8}$ является неправильной, т.к. выполняется условие $\frac{8}{8}=1$.
Рассмотрим более подробно понятие неправильной дроби.
Возьмем для примера неправильную дробь $\frac{7}{7}$. Значение этой дроби -- взяли семь долей предмета, который поделен на семь одинаковых долей. Таким образом, из семи долей, которые есть в наличии, можно составить весь предмет. Т.е. неправильная дробь $\frac{7}{7}$ описывает целый предмет и $\frac{7}{7}=1$. Итак, неправильные дроби, у которых числитель равен знаменателю, описывают один целый предмет и такая дробь может быть заменена на натуральное число $1$.
$\frac{5}{2}$ -- достаточно очевидно, что из этих пяти вторых долей можно составить $2$ целых предмета (один целый предмет будут составлять $2$ доли, а для составления двух целых предметов нужны $2+2=4$ доли) и остается одна вторая доля. Т.е., неправильная дробь $\frac{5}{2}$ описывает $2$ предмета и $\frac{1}{2}$ долю этого предмета.
$\frac{21}{7}$ -- из двадцати одной седьмых долей можно составить $3$ целых предмета ($3$ предмета по $7$ долей в каждом). Т.е. дробь $\frac{21}{7}$ описывает $3$ целых предмета.
Из рассмотренных примеров можно сделать следующий вывод: неправильную дробь можно заменить натуральным числом, если числитель нацело делится на знаменатель (например, $\frac{7}{7}=1$ и $\frac{21}{7}=3$), или суммой натурального числа и правильной дроби, если числитель нацело не делится на знаменатель (например,$\ \frac{5}{2}=2+\frac{1}{2}$). Поэтому такие дроби и называются неправильными .
Определение 1
Процесс представления неправильной дроби в виде суммы натурального числа и правильной дроби (например, $\frac{5}{2}=2+\frac{1}{2}$) называется выделением целой части из неправильной дроби .
При работе с неправильными дробями прослеживается тесная связь между ними и смешанными числами.
Неправильная дробь часто записывается в виде смешанного числа -- числа, которое состоит из целой и дробной части.
Чтобы записать неправильную дробь в виде смешанного числа, необходимо разделить числитель на знаменатель с остатком. Частное будет составлять целую часть смешанного числа, остаток -- числитель дробной части, а делитель -- знаменатель дробной части.
Пример 5
Записать неправильную дробь $\frac{37}{12}$ в виде смешанного числа.
Решение.
Разделим числитель на знаменатель с остатком:
\[\frac{37}{12}=37:12=3\ (остаток\ 1)\] \[\frac{37}{12}=3\frac{1}{12}\]
Ответ. $\frac{37}{12}=3\frac{1}{12}$.
Чтобы записать смешанное число в виде неправильной дроби, необходимо знаменатель умножить на целую часть числа, к произведению, которое получилось, прибавить числитель дробной части и записать полученную сумму в числитель дроби. Знаменатель неправильной дроби будет равен знаменателю дробной части смешанного числа.
Пример 6
Записать смешанное число $5\frac{3}{7}$ в виде неправильной дроби.
Решение.
Ответ. $5\frac{3}{7}=\frac{38}{7}$.
Сложение смешанного числа и правильной дроби
Сложение смешанного числа $a\frac{b}{c}$ и правильной дроби $\frac{d}{e}$ выполняет прибавлением к данной дроби дробной части данного смешанного числа:
Пример 7
Выполнить сложение правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$.
Решение.
Воспользуемся формулой сложения смешанного числа и правильной дроби:
\[\frac{4}{15}+3\frac{2}{5}=3+\left(\frac{2}{5}+\frac{4}{15}\right)=3+\left(\frac{2\cdot 3}{5\cdot 3}+\frac{4}{15}\right)=3+\frac{6+4}{15}=3+\frac{10}{15}\]
По признаку деления на число \textit{5 }можно определить, что дробь $\frac{10}{15}$ -- сократима. Выполним сокращение и найдем результат сложения:
Итак, результатом сложения правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$ будет $3\frac{2}{3}$.
Ответ: $3\frac{2}{3}$
Сложение смешанного числа и неправильной дроби
Сложение неправильной дроби и смешанного числа сводят к сложению двух смешанных чисел, для чего достаточно выделить целую часть из неправильной дроби.
Пример 8
Вычислить сумму смешанного числа $6\frac{2}{15}$ и неправильной дроби $\frac{13}{5}$.
Решение.
Сначала выделим целую часть из неправильной дроби $\frac{13}{5}$:
Ответ: $8\frac{11}{15}$.
С дробями мы сталкиваемся в жизни гораздо раньше, чем начинается их изучение в школе. Если разрезать целое яблоко пополам, то мы получим часть фрукта - ½. Разрежем ещё раз - будет ¼. Это и есть дроби. И все, казалось бы, просто. Для взрослого человека. Для ребенка же (а данную тему начинают изучать в конце младшей школы) абстрактные математические понятия ещё пугающе непонятны, и преподаватель должен доступно объяснить, что такое правильная дробь и неправильная, обыкновенная и десятичная, какие операции можно с ними совершать и, главное, для чего всё это нужно.
Какие бывают дроби
Знакомство с новой темой в школе начинается с обыкновенных дробей. Их легко узнать по горизонтальной черте, разделяющей два числа - сверху и снизу. Верхнее называется числителем, нижнее - знаменателем. Существует и строчный вариант написания неправильных и правильных обыкновенных дробей - через косую черту, например: ½, 4/9, 384/183. Такой вариант используется, когда высота строки ограничена и нет возможности применить «двухэтажную» форму записи. Почему? Да потому что она удобнее. Чуть позже мы в этом убедимся.
Помимо обыкновенных, существуют также десятичные дроби. Различить их очень просто: если в одном случае используется горизонтальная или наклонная черта, то в другом - запятая, разделяющая последовательности цифр. Посмотрим пример: 2,9; 163,34; 1,953. Мы намеренно воспользовались точкой с запятой в качестве разделителя, чтобы разграничить числа. Первое из них будет читаться так: «две целых, девять десятых».
Новые понятия
Вернемся к обыкновенным дробям. Они бывают двух видов.
Определение правильной дроби звучит следующим образом: это такая дробь, числитель которой меньше знаменателя. Почему это важно? Сейчас увидим!
У вас есть несколько яблок, разделенных на половинки. Всего - 5 частей. Как вы скажете: у вас «два с половиной» или «пять вторых» яблока? Конечно, первый вариант звучит естественнее, и при разговоре с друзьями мы воспользуемся им. А вот если потребуется посчитать, сколько фруктов достанется каждому, если в компании пять человек, мы запишем число 5/2 и разделим его на 5 - с точки зрения математики это будет нагляднее.
Итак, для наименования правильных и неправильных дробей правило таково: если в дроби можно выделить целую часть (14/5, 2/1, 173/16, 3/3), то она является неправильной. Если этого сделать нельзя, как в случае с ½, 13/16, 9/10, она будет правильной.
Основное свойство дроби
Если числитель и знаменатель дроби одновременно умножить или разделить на одно и то же число, её величина не изменится. Представьте: торт порезали на 4 равные части и дали вам одну. Такой же торт порезали на восемь частей и дали вам две. Не всё ли равно? Ведь ¼ и 2/8 - это одно и то же!
Сокращение
Авторы задач и примеров в учебниках по математике зачастую стремятся запутать учеников, предлагая громоздкие в написании дроби, которые на самом деле можно сократить. Вот пример правильной дроби: 167/334, который, казалось бы, выглядит очень «страшно». Но на самом деле мы можем записать его как ½. Число 334 делится на 167 без остатка - проделав такую операцию, мы получим 2.
Смешанные числа
Неправильную дробь можно представить в форме смешанного числа. Это когда целая часть вынесена вперед и записана на уровне горизонтальной черты. Фактически выражение принимает вид суммы: 11/2 = 5 + ½; 13/6 = 2 + 1/6 и так далее.
Чтобы вынести целую часть, нужно разделить числитель на знаменатель. Остаток от деления записать сверху, над чертой, а целую часть - перед выражением. Таким образом, мы получаем две структурные части: целые единицы + правильную дробь.
Можно осуществить и обратную операцию - для этого нужно целую часть умножить на знаменатель и прибавить полученное значение к числителю. Ничего сложного.
Умножение и деление
Как ни странно, умножать дроби проще, чем складывать. Всего-то и требуется - продлить горизонтальную черту: (2/3) * (3/5) = 2*3 / 3*5 = 2/5.
С делением тоже всё просто: нужно перемножить дроби крест-накрест: (7/8) / (14/15) = 7*15 / 8*14 = 15/16.
Сложение дробей
Что делать, если требуется осуществить сложение или а в знаменателе у них разные числа? Поступить так же, как с умножением, не получится - здесь следует понимать определение правильной дроби и её сущность. Нужно привести слагаемые к общему знаменателю, то есть в нижней части обеих дробей должны оказаться одинаковые числа.
Чтобы это осуществить, следует воспользоваться основным свойством дроби: умножить обе части на одно и то же число. Например, 2/5 + 1/10 = (2*2)/(5*2) + 1/10 = 5/10 = ½.
Как же выбрать, к какому знаменателю приводить слагаемые? Это должно быть минимальное число, кратное обоим числам, стоящим в знаменателях дробей: для 1/3 и 1/9 это будет 9; для ½ и 1/7 - 14, потому что меньшего значения, делящегося без остатка на 2 и 7, не существует.
Использование
Для чего нужны неправильные дроби? Ведь гораздо удобнее сразу выделить целую часть, получить смешанное число - и дело с концом! Оказывается, если требуется выполнить умножение или деление двух дробей, выгоднее воспользоваться именно неправильными.
Возьмем следующий пример: (2 + 3/17) / (37 / 68).
Казалось бы, сократить и вовсе нечего. Но что, если записать результат сложения в первых скобках в виде неправильной дроби? Посмотрите: (37/17) / (37/68)
Теперь всё встает на свои места! Запишем пример таким образом, чтобы всё стало очевидно: (37*68) / (17*37).
Сократим 37 в числителе и знаменателе и, наконец, разделим верхнюю и нижнюю части на 17. Вы же помните основное правило для правильной и неправильной дроби? Мы можем умножать и делить их на любое число, если делаем это одновременно для числителя и знаменателя.
Итак, получаем ответ: 4. Пример выглядел сложным, а ответ содержит всего одну цифру. В математике так часто происходит. Главное - не бояться и следовать простым правилам.
Распространенные ошибки
При осуществлении учащийся может легко совершить одну из популярных ошибок. Обычно они происходят из-за невнимательности, а иногда - из-за того, что изученный материал ещё не отложился в голове как следует.
Нередко сумма чисел, стоящая в числителе, вызывает желание сократить отдельные её компоненты. Допустим, в примере: (13 + 2) / 13, написанном без скобок (с горизонтальной чертой), многие ученики по неопытности зачеркивают 13 сверху и снизу. Но так делать нельзя ни в коем случае, ведь это грубая ошибка! Если бы вместо сложения стоял знак умножения, мы получили бы в ответе число 2. Но при осуществлении сложения никакие операции с одним из слагаемых не позволительны, только со всей суммой целиком.
Ещё ребята часто ошибаются при делении дробей. Возьмем две правильные несократимые дроби и разделим друг на друга: (5/6) / (25/33). Ученик может перепутать и записать результирующее выражение как (5*25) / (6*33). Но так бы получилось при умножении, а в нашем случае всё будет несколько иначе: (5*33) / (6*25). Сокращаем то, что возможно, и в ответе увидим 11/10. Получившуюся неправильную дробь запишем как десятичную - 1,1.
Скобки
Помните, что в любых математических выражениях порядок действий определяется приоритетом знаков операций и наличием скобок. При прочих равных отсчёт очередности выполнения действий происходит слева направо. Это актуально и для дробей - выражение в числителе или знаменателе рассчитывается строго по этому правилу.
Ведь Это результат деления одного числа на другое. Если они не делятся нацело, получается дробь - вот и всё.
Как записать дробь на компьютере
Поскольку стандартные средства не всегда позволяют создать дробь, состоящую из двух «ярусов», ученики порой идут на различные ухищрения. Например, копируют числители и знаменатели в графический редактор «Пейнт» и склеивают их воедино, рисуя между ними горизонтальную линию. Конечно, есть более простой вариант, который, кстати, предоставляет и массу дополнительных возможностей, которые станут полезны вам в будущем.
Откройте «Майкрософт Ворд». Одна из панелей в верхней части экрана носит называние «Вставка» - нажмите её. Справа, в той стороне, где расположены значки закрытия и сворачивания окна, есть кнопка «Формула». Это именно то, что нам нужно!
Если вы воспользуетесь данной функцией, на экране появится прямоугольная область, в которой можно использовать любые математические знаки, отсутствующие на клавиатуре, а также писать дроби в классическом виде. То есть разделяя числитель и знаменатель горизонтальной чертой. Вы даже можете удивиться, что такую правильную дробь настолько легко записать.
Изучайте математику
Если вы учитесь в 5-6 классе, то уже скоро знание математики (в том числе - умение работать с дробями!) потребуется во многих школьных предметах. Практически в любой задаче по физике, при измерении массы веществ в химии, в геометрии и тригонометрии без дробей никак не обойтись. Уже скоро вы научитесь вычислять всё в уме, даже не записывая выражения на бумаге, но будут появляться всё более и более сложные примеры. Поэтому выучите, что такое правильная дробь и как с ней работать, не отставайте по учебной программе, своевременно делайте домашние задания, и тогда вы преуспеете.
Делятся на правильные и неправильные.
Правильные дроби
Правильная дробь - это обыкновенная дробь, у которой числитель меньше знаменателя.
Чтобы узнать является ли дробь правильной, надо сравнить её члены между собой. Члены дроби сравниваются в соответствии с правилом сравнения натуральных чисел .
Пример. Рассмотрим дробь:
7 |
8 |
Пример:
8 | = 1 | 1 |
7 | 7 |
Правила перевода и дополнительные примеры можно посмотреть в теме Перевод неправильной дроби в смешанное число . Также для перевода неправильной дроби в смешанное число вы можете воспользоваться онлайн калькулятором .
Сравнение правильных и неправильных дробей
Любая неправильная обыкновенная дробь больше правильной, так как правильная дробь всегда меньше единицы, а неправильная больше единицы или равна ей.
Пример:
3 | > | 99 |
2 | 100 |
Правила сравнения и дополнительные примеры можно посмотреть в теме Сравнение обыкновенных дробей . Также для сравнения дробей или проверки сравнения вы можете воспользоваться
Обыкновенные дроби делятся на \textit{правильные} и \textit{неправильные} дроби. Такое разделение основано на сравнении числителя и знаменателя.
Правильные дроби
Правильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель меньше знаменателя, т.е. $m
Пример 1
Например, дроби $\frac{1}{3}$, $\frac{9}{123}$, $\frac{77}{78}$, $\frac{378567}{456298}$ являются правильными, так как в каждой из них числитель меньше знаменателя, что отвечает определению правильной дроби.
Существует определение правильной дроби, которое базируется на сравнении дроби с единицей.
правильной , если она меньше единицы:
Пример 2
Например, обыкновенная дробь $\frac{6}{13}$ является правильной, т.к. выполняется условие $\frac{6}{13}
Неправильные дроби
Неправильной дробью называется обыкновенная дробь $\frac{m}{n}$, у которой числитель больше или равен знаменателю, т.е. $m\ge n$.
Пример 3
Например, дроби $\frac{5}{5}$, $\frac{24}{3}$, $\frac{567}{113}$, $\frac{100001}{100000}$ являются неправильными, так как в каждой из них числитель больше или равен знаменателю, что соответствует определению неправильной дроби.
Дадим определение неправильной дроби, которое базируется на ее сравнении с единицей.
Обыкновенная дробь $\frac{m}{n}$ является неправильной , если она равна или больше единицы:
\[\frac{m}{n}\ge 1\]
Пример 4
Например, обыкновенная дробь $\frac{21}{4}$ является неправильной, т.к. выполняется условие $\frac{21}{4} >1$;
обыкновенная дробь $\frac{8}{8}$ является неправильной, т.к. выполняется условие $\frac{8}{8}=1$.
Рассмотрим более подробно понятие неправильной дроби.
Возьмем для примера неправильную дробь $\frac{7}{7}$. Значение этой дроби -- взяли семь долей предмета, который поделен на семь одинаковых долей. Таким образом, из семи долей, которые есть в наличии, можно составить весь предмет. Т.е. неправильная дробь $\frac{7}{7}$ описывает целый предмет и $\frac{7}{7}=1$. Итак, неправильные дроби, у которых числитель равен знаменателю, описывают один целый предмет и такая дробь может быть заменена на натуральное число $1$.
$\frac{5}{2}$ -- достаточно очевидно, что из этих пяти вторых долей можно составить $2$ целых предмета (один целый предмет будут составлять $2$ доли, а для составления двух целых предметов нужны $2+2=4$ доли) и остается одна вторая доля. Т.е., неправильная дробь $\frac{5}{2}$ описывает $2$ предмета и $\frac{1}{2}$ долю этого предмета.
$\frac{21}{7}$ -- из двадцати одной седьмых долей можно составить $3$ целых предмета ($3$ предмета по $7$ долей в каждом). Т.е. дробь $\frac{21}{7}$ описывает $3$ целых предмета.
Из рассмотренных примеров можно сделать следующий вывод: неправильную дробь можно заменить натуральным числом, если числитель нацело делится на знаменатель (например, $\frac{7}{7}=1$ и $\frac{21}{7}=3$), или суммой натурального числа и правильной дроби, если числитель нацело не делится на знаменатель (например,$\ \frac{5}{2}=2+\frac{1}{2}$). Поэтому такие дроби и называются неправильными .
Определение 1
Процесс представления неправильной дроби в виде суммы натурального числа и правильной дроби (например, $\frac{5}{2}=2+\frac{1}{2}$) называется выделением целой части из неправильной дроби .
При работе с неправильными дробями прослеживается тесная связь между ними и смешанными числами.
Неправильная дробь часто записывается в виде смешанного числа -- числа, которое состоит из целой и дробной части.
Чтобы записать неправильную дробь в виде смешанного числа, необходимо разделить числитель на знаменатель с остатком. Частное будет составлять целую часть смешанного числа, остаток -- числитель дробной части, а делитель -- знаменатель дробной части.
Пример 5
Записать неправильную дробь $\frac{37}{12}$ в виде смешанного числа.
Решение.
Разделим числитель на знаменатель с остатком:
\[\frac{37}{12}=37:12=3\ (остаток\ 1)\] \[\frac{37}{12}=3\frac{1}{12}\]
Ответ. $\frac{37}{12}=3\frac{1}{12}$.
Чтобы записать смешанное число в виде неправильной дроби, необходимо знаменатель умножить на целую часть числа, к произведению, которое получилось, прибавить числитель дробной части и записать полученную сумму в числитель дроби. Знаменатель неправильной дроби будет равен знаменателю дробной части смешанного числа.
Пример 6
Записать смешанное число $5\frac{3}{7}$ в виде неправильной дроби.
Решение.
Ответ. $5\frac{3}{7}=\frac{38}{7}$.
Сложение смешанного числа и правильной дроби
Сложение смешанного числа $a\frac{b}{c}$ и правильной дроби $\frac{d}{e}$ выполняет прибавлением к данной дроби дробной части данного смешанного числа:
Пример 7
Выполнить сложение правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$.
Решение.
Воспользуемся формулой сложения смешанного числа и правильной дроби:
\[\frac{4}{15}+3\frac{2}{5}=3+\left(\frac{2}{5}+\frac{4}{15}\right)=3+\left(\frac{2\cdot 3}{5\cdot 3}+\frac{4}{15}\right)=3+\frac{6+4}{15}=3+\frac{10}{15}\]
По признаку деления на число \textit{5 }можно определить, что дробь $\frac{10}{15}$ -- сократима. Выполним сокращение и найдем результат сложения:
Итак, результатом сложения правильной дроби $\frac{4}{15}$ и смешанного числа $3\frac{2}{5}$ будет $3\frac{2}{3}$.
Ответ: $3\frac{2}{3}$
Сложение смешанного числа и неправильной дроби
Сложение неправильной дроби и смешанного числа сводят к сложению двух смешанных чисел, для чего достаточно выделить целую часть из неправильной дроби.
Пример 8
Вычислить сумму смешанного числа $6\frac{2}{15}$ и неправильной дроби $\frac{13}{5}$.
Решение.
Сначала выделим целую часть из неправильной дроби $\frac{13}{5}$:
Ответ: $8\frac{11}{15}$.
Правильные и неправильные дроби отталкивают учеников 5 класса математики своими названиями. Тем не менее, ничего страшного в этих числах нет. Чтобы не допускать ошибок в вычислениях и развеять все тайны, связанные с этими числами, рассмотрим тему в подробности.
Что такое дробь?
Дробью зовут незавершенную операцию деления. Еще один вариант: дробь это часть целого. Числитель это количество частей, принятых к расчету. Знаменатель общее количество частей, на которое разделили целое.
Виды дробей
Выделяют следующие виды дробей:
- Обыкновенная дробь. Это дробь, у которой числитель меньше знаменателя.
- Неправильная дробь, у которой числитель больше знаменателя.
- Смешанное число, которое имеет целую и дробную часть
- Десятичная дробь. Это число, у которого в знаменателе всегда степень числа 10. Записывается такая дробь с помощью разделительной запятой.
Какая дробь называется правильной?
Правильной дробью называют обыкновенную дробь. Этот подвид дробей появился раньше прочих. Позже виды чисел увеличивались, открывались и создавались новые числа и дроби. Первую дробь называют правильной, потому что именно она отражает смысл, который вкладывали древние математики в понятие дроби: это часть числа. При этом эта часть всегда меньше целого, то есть, 1.
Почему неправильную дробь так называют?
Неправильная дробь больше 1. То есть она уже немного не соответствует первому определению. Это уже не часть целого. Можно представлять себе неправильную дробь, как кусочки нескольких пирогов. Ведь пирог не всегда один. Тем не менее, дробь считается неправильной.
Неправильную дробь не принято оставлять в результате вычислений. Лучше преобразовать ее в смешанное число.
Как перевести правильную дробь в неправильную?
Перевести правильную дробь в неправильную или наоборот невозможно. Это разные категории чисел. Но некоторые ученики часто путают понятия и называют перевод неправильной дроби в смешанные числа превращением неправильной дроби в правильную.
В смешанные числа неправильную дробь переводят достаточно часто, как и смешанные числа в неправильные дроби. Чтобы перевести неправильную дробь в смешанное число, нужно числитель поделить на знаменатель с остатком. Остаток в этом случае станет числителем дробной части, частное станет целой частью, а знаменатель останется прежним.
Что мы узнали?
Мы вспомнили, что такое дробь. Повторили все виды дробей и сказали, какую дробь называют правильной. Отдельно отметили, почему неправильная дробь получила такое название. Сказали, что перевести неправильную дробь в правильную или наоборот не получится. Последнее утверждение можно считать правилом правильных и неправильных дробей.
Тест по теме
Оценка статьи
Средняя оценка: 4.2 . Всего получено оценок: 260.