В 1966 году австралийские ученые М. Хетч и К. Слэк установили, что у некоторых злаковых растений тропического и субтропического происхождения фотосинтез имеет свои особенности.
Особенность заключается в том, что в качестве первых продуктов фотосинтеза у этой группы растений образуется не трех, а четырехуглеродные соединения. При образовании 4-х углеродных соединений, углекислота соединяется не с рибулезодифосфатом, а с * кислотой. Путь ассимиляции СО 2 через * кислоту с образованием С4-дикарбоновых кислот получил название С4-путь усвоения углерода, а организмы С4-растений.
У растений тропического происхождения – сахарный тростник, сорго, просо, злаки, кукуруза, амарант и др. листовые сосудистые пучки окружены крупными клетками паренхимы с большими, зачастую лишенными гран хлоропластами. Эти клетки в свою очередь окружены более мелкими клеточками мезофилла с меньшими хлоропластами. В клетках мезофилла листа происходит первичное акцептирование СО 2 на * кислоту, которая вовлекает СО 2 в реакции карбоксилирования даже при очень низких концентрациях СО 2 в окружающем воздухе.
В результате карбоксилирования образуются щавелево-уксусная, яблочная и аспарагиновая кислоты. Из них яблочная и аспарагиновая переходят в обкладочные клетки проводящих пучков листа, подвергаются там декарбоксилированию и создают внутри клеток высокую концентрацию СО 2 , усваиваемую уже через рибулозодифосфат-карбоксилазу в цикле Калвина. Это выгодно, во-первых потому, что облегчает введение СО 2 в цикл Калвина через карбоксилирование рибулозодифосфата при помощи фермента рибулозодифосфат-карбоксилазы, которая менее активна и требует для оптимальной работы боле высоких концентраций СО 2 , чем *-карбоксилаза. Кроме того, высокая концентрация СО 2 в обкладочных клетках уменьшает световое дыхание и связанные с ним потери энергии.
Таким образом происходит высокоинтенсивный и кооперативный фотосинтез, свободный от излишних потерь в световом дыхании, от кислородного ингибирования и хорошо приспособленный в атмосфере бедной СО 2 и богатой О 2 .
Растения с С4-фотосинтезом – это цветковые растения из 19 семейств (3 сем. однодольных и 16 сем. двудольных). С4-злаки преобладают в районах с очень высокой температурой, приходящейся на вегетационный сезон. С4-двудольные широко распространены в тех районах, где вегетационный сезон характеризуется чрезмерной засушливостью. Для 23 семейств цветковых растений характерен метаболизм органических кислот по типу толстянковых, обозначенный как САМ-метаболизм. САМ-метаболизм возник в процессе эволюции у листьев суккулентных растений, включая кактусы и толстянки, но не все САМ-растения суккуленты, например, ананасы.
Суккуленты, произрастающие в засушливых областях (кактус) так же фиксируют атмосферный СО 2 с образованием 4-х углеродных соединений. Однако по своему физиологическому поведению эти растения отличаются от других представителей С4-типа. Устьица у них открыты ночью и закрыты днем. Обычно же картина бывает обратной: свет стимулирует открывание устьиц, а в темноте они остаются закрытыми.
Такой тип поведения представляет несомненную выгоду для растений пустыни. Эти растения поглощают в ночное время атмосферную СО2 образуя в результате её фиксацию 4-х углеродной органической кислоты, главным образом яблочную. Яблочная кислота запасается в вакуолях. Роль первичного акцептора углерода играет у них, как и у прочих С4-растений ФЕП. Днем, когда хлорофилл активируется светом, яблочная кислота декарбоксилируется с образованием 3-х углеродного соединения и СО2, их которой затем и строятся 6-углеродные сахара в цикле Кальвина.
Чередование на протяжении суток двух процессов: накопление кислот в ночное время и их распад днем получило название САМ-метаболизма, по семейству Crassulaceae.
У САМ-растений первичное карбоксилирование и образование 6-углеродных сахаров происходит в одних и тех же клетках, но в разное время. Тогда как у прочих С4-растений эти процессы происходят одновременно, но могут быть приурочены к разным клеткам. Разделение во времени фиксации СО 2 и переработки СО 2 на следующий день экономически выгодно. Таким образом, они обеспечивают себя углеродом, не подвергаясь чрезмерной потере воды.
Фотосинтез – это процесс трансформации поглощенной растением энергии солнечного света в химическую энергию органических соединений. С 4 - путь фотосинтеза или цикл Хетча-Слэка.
Австралийскими учеными Хетчем и Слэком был описан С 4 -путь фотосинтеза, характерный для тропических и субтропических растений (сахарный тростник, кукуруза и др.). Листья этих растений содержат хлоропласты двух типов: обычные в клетках мезофилла и крупные хлоропласты, не имеющие гран и фотосистемы II, в клетках обкладки, окружающих проводящие пучки.
В цитоплазме клеток мезофилла присоединяет СО 2 к пировиноградной кислоте, образуя щавелевоуксусную кислоту. Она транспортируется в хлоропласты, где восстанавливается до яблочной кислоты при участии НАДФН. В присутствии ионов аммония щавелевоуксусная кислота превращается в аспарагиновую кислоту. Яблочная и (или) аспарагиновая кислоты переходят в хлоропласты клеток обкладки, восстанавливаются до пировиноградной кислоты и СО 2 . СО 2 включается в цикл Кальвина, а пировиноградная кислота переносится в клетки мезофилла, где превращается в пировиноградную кислоту. Такой механизм позволяет растениям фотосинтезировать при закрытых из-за высокой температуры устьицах. Кроме того, продукты цикла Кальвина образуются в хлоропластах клеток обкладки, окружающих проводящие пучки. Это способствует быстрому оттоку фотоассимилятов и тем самым повышает интенсивность фотосинтеза.
Липиды: классификация и их роль в растении.
Липиды представляют собой достаточно сложные по химической структуре вещества. В их состав также входят углерод, кислород, водород, но в отдельные группы липидов могут входить и фосфор, и сера, и азот (фосфатиды, пигменты). Все липиды гидрофобны, т.е. не растворяются в воде. Функции у липидов различны в зависимости от химического строения. Липиды не являются биополимерами.
Липиды классифицируются на 5 больших групп по признаку функции и сложности строения:Жиры- наиболее легко синтезируемая группа липидов. С химической точки зрения - это эфиры жирных кислот и глицерина.Основные функции жиров - энергетическая, строительная и запасающая.Воска - это жироподобные вещества, твердые при комнатной температуре. По химической структуре - это сложные эфиры между жирными кислотами и высокомолекулярными одноатомными спиртами жирного ряда.Основная функция восков - защитная.Фосфатиды - к которым относятся глицерофосфатиды, лецитины и кефалины - это молекулы сложных эфиров глицерина, жирных кислот и фосфорной кислоты. Эти вещества входят в состав запасных жиров и предохраняют их от прогоркания.Основная функция фосфатидов - запасающая.
Пигменты (хлорофиллы и каротиноиды) - это особая группа липидов, имеющая сложное строение, куда входят и азотистые радикалы. К пигментам относят две группы веществ - хлорофиллы и каротиноиды.
Основная функция пигментов - участие в энергетической (световой) фазе фотосинтеза.Стероиды - это производные сложного гетероциклического соединения. В эту группу соединений входят высокомолекулярные спирты (стеролы) и их сложные эфиры (стериды) Наиболее известный стероид - эргостерол, из которого в промышленности получают витамин Д.
Основная функция стероидов- строительная (участвуют в составе мембран).
В 1965 г. было показано, что у одного из тропических растений - сахарного тростника - первыми продуктами фотосинтеза, по-видимому, являются кислоты, содержащие четыре атома углерода (яблочная, щавелевоуксусная и аспарагиновая), а не С 3 -кислота (фосфоглицериновая), как у хлореллы и у большинства растений умеренной зоны. С тех пор было выявлено много других растений, главным образом тропических (и в том числе имеющих важное хозяйственное значение), у которых наблюдалась точно такая же картина; они были названы С 4 -растениями . Из однодольных к ним принадлежат, например, кукуруза (Zed), сорго (Sorghum), сахарный тростник (Sacchamm), просо (Eleusine), а из двудольных - Amaranthus и некоторые виды Euphorbia. Растения, у которых первым продуктом фотосинтеза является С 3 -кислота (ФГК), называют С 3 -растениями. Биохимию именно таких растений мы до сих пор и рассматривали в этой главе.
В 1966 г. австралийские исследователи Хэтч и Слэк показали, что С 4 -растения гораздо эффективнее поглощают двуокись углерода, чем С 3 -растения: в экспериментальной камере они снижали концентрацию СО 2 в газовой фазе до 0,1 ч. на млн., а С 3 -растения-только до 50-100 ч. на млн. Это говорит о том, что у С 4 -растений низкая углекислотная точка компенсации . У таких растений практически незаметно фото дыхание.
Этот новый путь превращений углерода у С 4 -растений называют путем Хэтча-Слэка . Хотя этот процесс несколько различен у разных видов, мы рассмотрим, как он идет у типичного С 4 -растения - кукурузы. Для С 4 -растений характерно особое анатомическое строение листа: все проводящие пучки у них окружены двойным слоем клеток. Хлоропласты клеток внутреннего слоя - обкладки проводящего пучка - отличаются по форме от хлоропластов в клетках мезофилла , из которых состоит наружный слой (диморфизм хлоропластов). На рис. 9.29, А и Б показано, как выглядит эта так называемая "кранц-анатомия " (от нем. Kranz - корона, венец, кольцо; при этом имеются в виду два клеточных слоя, на срезе имеющие вид колец). Ниже мы рассмотрим биохимические реакции С 4 -пути (см. рис. 9.30).
Рис. 9.29. А. "Кранц-анатомия", характерная для С 4 -растений. Микрофотография поперечного среза листа росички кроваво-красной (Digitaria sanguinalis), демонстрирующая диморфизм хлоропласте в клетках мезофилла и клетках обкладки проводящих пучков. В клетках мезофилла видны многочисленные граны, а в клетках обкладки проводящих пучков содержатся только отдельные рудиментарные граны. В обоих случаях видны зерна крахмала, × 4000. Б. Электронная микрофотография листа кукурузы. В клетках мезофилла и в клетках обкладки проводящих пучков видны хлоропласты двух типов, × 9900
Рис. 9.30. Упрощенная схема С 4 -пути, сопряженного с фиксацией двуокиси углерода. Показано, как двуокись углерода попадает из воздуха в клетки обкладки проводящих пучков и как происходит ее окончательная фиксация в составе С 3 -кислоты - ФГК
Путь Хэтча-Слэка
Это путь, связанный с транспортировкой СО 2 и водорода из клеток мезофилла в клетки обкладки проводящего пучка. В этих клетках двуокись углерода фиксируется точно так же, как и у С 3 -растений (рис. 9.30), а водород используется для ее восстановления.
Фиксация двуокиси углерода в клетках мезофилла. СО 2 фиксируется в цитоплазме клеток мезофилла в соответствии с уравнением:
Акцептором СО 2 служит фосфоенолпируват (ФЕП), а не рибулозобисфосфат (РиБФ), а вместо РиБФ-карбоксилазы в этой реакции участвует ФЕП-карбоксилаза. У этого фермента есть два громадных преимущества перед РиБФ-карбоксилазой. Во-первых, у него более высокое сродство к СО 2 , и, во-вторых, он не взаимодействует с кислородом и поэтому не участвует в фотодыхании. Образующийся оксалоацетат превращается в малат или аспартат, которые содержат по 4 атома углерода. У этих кислот две карбоксильные (-СООН) группы, т. е. это дикарбоновые кислоты .
Малатный шунт . Через плазмодесмы в клеточных стенках малат переходит в хлоропласты клеток обкладки проводящих пучков. Там он используется для образования СО 2 (путем декарбоксилирования), водорода (за счет окисления) и пиру вата. Выделяющийся при этом водород восстанавливает НАДФ до НАДФ·Н 2 .
Регенерация акцептора СО 2 . Пируват возвращается в клетки мезофилла и используется там для регенерации ФЕП путем присоединения фосфатной группы от АТФ к пирувату. На это расходуется энергия двух высокоэнергетических фосфатных связей.
Итоговая "стоимость" С4-пути
На транспорт СО 2 и водорода из клеток мезофилла в хлоропласты клеток обкладки проводящих пучков расходуются две высокоэнергетические фосфатные связи.
Повторная фиксация двуокиси углерода в клетках обкладки проводящих пучков
В хлоропластах клеток обкладки проводящих пучков образуются СО 2 , НАДФ·Н 2 и пируват (см. выше о малатном шунте). Затем СО 2 повторно фиксируется РиБФ-карбоксилазой в обычном С 3 -пути, где используется также и НАДФ·Н 2 .
Поскольку каждая молекула СО 2 должна связаться дважды, затраты энергии при С 4 -фотосинтезе примерно вдвое больше, чем при С 3 -фотосинтезе. На первый взгляд транспорт СО 2 в С 4 -пути кажется бессмысленным. Однако двуокись углерода настолько эффективно фиксируется ФЕП-карбоксилазой клеток мезофилла, что в клетках обкладки проводящих пучков накапливается очень большое количество СО 2 . А это значит, что РиБФ-карбоксилаза работает в более выгодных условиях, чем у С 3 -растений, где такой же фермент функционирует при обычной атмосферной концентрации СО 2 . Тому есть две причины: во-первых, РиБФ-карбоксилаза, как и любой фермент, более эффективно работает при высокой концентрации субстрата, и, во-вторых, подавляется фотодыхание, так как СО 2 конкурентно вытесняет кислород из активного центра.
Поэтому главное преимущество С 4 -фотосинтеза состоит в том, что значительно возрастает эффективность фиксации СО 2 , а углерод не теряется бесполезно в результате фотодыхания. Этот путь скорее дополняет, а не заменяет обычный С 3 -путь. В результате фотосинтез у С 4 -растений более эффективен, так как в обычных условиях скорость фотосинтеза лимитируется скоростью фиксации СО 2 . С 4 -растения потребляют больше энергии, но энергия, как правило, не бывает лимитирующим фактором фотосинтеза; такие растения обычно растут в странах, где интенсивность освещения очень высока, а хлоропласты у них видоизменены так, чтобы еще лучше использовать доступную им энергию (см. ниже).
Хлоропласты клеток мезофилла и обкладки проводящих пучков
Важнейшие различия между хлоропластами в клетках мезофилла и в клетках обкладки проводящих пучков перечислены в табл. 9.7, отчасти они видны и на рис. 9.29.
Таблица 9.7. Особенности хлоропластов мезофилла и хлоропластов обкладки проводящих пучков у С 4 -растений
9.39. Какие хлоропласты лучше приспособлены для световых, а какие - для темновых реакций?
9.40. Почему отсутствие гран в хлоропластах обкладки проводящих пучков дает определенную выгоду?
9.41. Малатный шунт - это фактически насос для перекачки СО 2 и водорода. Какие преимущества он дает?
9.42. а) Как скажется понижение концентрации кислорода на С 3 -фотосинтезе? б) А как - на С 4 -фотосинтезе? Объясните ваши ответы.
Листья таких растений, как сахарный тростник, кукуруза, сорго, амарант способны фиксировать CO2 не только в реакциях цикла Кальвина, но и другим путем, в ходе которого появляются C4-кислоты - щавелевоуксусная, яблочная и аспарагиновая. Такой способ связывания углекислоты получил название C4-пути фотосинтеза (путь Хэча и Слэка).
Для листьев C4-растений характерно анатомическое строение кранц-типа (описано Габерландтом, 1884). Проводящие пучки у таких растений окружены двумя слоями зеленых клеток ассимиляционной паренхимы. Для листьев C4-растений характерны многочисленные воздушные полости, по которым воздух из атмосферы подходит непосредственно к большому числу фотосинтезирующих клеток мезофилла, обеспечивая эффективное поглощение углекислоты. Особенностью строения листа C4-растений является наличие не более 2-3 слоев клеток мезофилла от ближайших клеток обкладки. Клетки обкладки, которые легко обмениваются продуктами фотосинтеза с клетками мезофилла с помощью большого числа плазмодесм, плотно упакованы вокруг проводящих пучков.
Клетки мезофилла | Клетки обкладки |
Хлоропласты мелкие, их много | Хлоропласты крупные, их мало. Содержат много зерен крахмала |
Есть граны | Не имеют гранальной структуры |
Есть фотосистема 1 и 2 | Нет фотосистемы 2, т.к. для ФС2 нужны стыки мембран тилакоидов. |
Нециклический поток электронов, выделяется О2 | Циклический поток электронов, NADPH НЕ образуется, НЕ выделяется О2 пониженное парциальное давление |
Есть фотодыхание | Нет фотодыхания (т.к. нет О2) |
ФЕП-карбоксилаза | - |
Низкая активность РУБИСКО | Высокая активность РУБИСКО |
10-15 клеток мезофилла на | 1 клетку обкладки |
Первичное усвоение СО2 | Вторичное усвоение СО2 |
Т.е. пространственно разграничены процессы первичного и вторичного усвоения СО2.
Фиксация углекислоты в клетках мезофилла происходит в результате присоединения CO2 к фосфоенолпировиноградной кислоте (ФЕП) и образования 4-углеродной щавелевоуксусной кислоты, которая затем превращается в яблочную или аспарагиновую кислоты.
ФЭП-карбоксилаза, в отличие от РУБИСКО (которая связывает только CO2), ассимилирует HCO3 - в условиях очень низкого парциального давления CO2и высокого -O2. Затем C4-кислоты (малат или аспар-тат) транспортируются в клетки обкладки, где происходит их декарбоксилирование и образование C3-кислот. После этого C3-кислоты возвращаются в клетки мезофилла, а углекислота попадает в цикл Кальвина.
В хлоропластах клеток обкладки очень низка активность фотосистемы II и поэтому не происходит фотолиза воды и выделения кислорода. Т.е. в клетках обкладки, где функционирует РУБИСКО, поддерживается высокая концентрация CO2 и низкая -O2. В этих хлоропластах энергия света идет только на синтез АТФ в результате работы фотосистемы I и циклического транспорта электронов. НАДФН, необходимый для синтеза углеводов в цикле Кальвина в хлоропластах обкладки, образуется при окислении маликэнзимом яблочной кислоты, поступающей из клеток мезофилла.
Различают три варианта C4-пути фотосинтеза, которые отличаются по типу С4-кислоты, которая транспортируется в клетки обкладки (аспартат или малат), по типу C3-кислоты (пируват или аланин), которая возвращается в клетки мезофилла для регенерации, и, наконец, по типу декарбоксилирования в клетках обкладки.
Исследования показали, что в растениях, в которых процесс фотосинтеза протекает по С 4 -пути, имеются два типа клеток и хлоропластов:
1) мелкие гранальные пластиды в клетках мезофилла листа;
2) крупные пластиды, часто лишенные гран, в клетках обкладки, окружающих сосудистые пучки.
К С4-растениям относится ряд культурных растений преимущественно тропического и субтропического происхождения – кукуруза, просо, сорго, сахарный тростник и многие злостные сорняки – свинорой, сыть округлая, просо куриное, гумай, щетинник и др. Как правило, это высокопродуктивные растения, устойчиво осуществляющие фотосинтез при значительных повышениях температуры и в засушливых условиях.
Особенности фотосинтеза:
Акцептором CO 2 является ФЕП фосфоенолпировиноградная кислота;
Фотосинтез разделен в пространстве
Конечными продуктами являются: органические кислоты, фермент ФЕП-карбоксилаза;
Отсутствует процесс фотодыхания;
Процесс карбоксилирования осуществляется дважды и это позволяет CO 2 поступать при закрытых устьицах.
Характерным признаком растений С4-пути является то, что образование продуктов цикла Кальвина происходит в хлоропластах, расположенных непосредственно около проводящих пучков. Это благоприятствует оттоку ассимилятов и, как следствие, повышает интенсивность фотосинтеза.
Стадии С4-цикла:
1. карбоксилирование (происходит в клетках мезофилла);
Карбоксилированию подвергаются фосфоенолпировиноградная кислота (ФЕП) при участии ФЕП-карбоксилазы и образуется щавелевоуксусная кислота (ЩУК), которая восстанавливается до яблочной кислоты (малат) или аминируется с образованием аспарагиновой кислоты.
ЩУК, малат и аспарагиновая кислоты являются четырехуглеродными соединениями.
В клетках обкладки яблочная кислота декарбоксилируется ферментом малатдегидрогеназой до пировиноградной кислоты (пируват, ПВК) и С0 2 . Реакция декарбоксилирования может варьировать у разных групп растений с использованием разных ферментов. С0 2 поступает в хлоропласты клеток обкладки и включается в цикл Кальвина-присоединяется к РДФ. Пируват возвращается в клетки мезофилла и превращается в первичный акцептор С0 2 - ФЕП. Таким образом, при С4-пути реакция карбоксилирования происходит дважды. Это позволяет растению создавать запасы углерода в клетках. Акцепторы С0 2 (ФЕП и РДФ) регенерируют, что и создает возможность непрерывного функционирования циклов. Фиксация С0 2 с участием ФЕП и образованием малата или аспартата служит своеобразным насосом для поставки С0 2 в хлоропласты обкладки, функционирующих по С3-пути.